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Abstract
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results enlighten some well-known conclusions from case studies in the management strategy literature. We
also characterize the effects of market structure on industry performance, which depart substantially from
ordinary markets. The approach relies on lattice-theoretic methods, supplemented with basic insights from
nonsmooth analysis.
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1. Introduction

It has often been observed that the nature of competition is qualitatively different in network
industries. The presence of interlinkages in consumers’ purchasing decisions induces demand-
side economies of scale that may strongly affect market behavior and performance. When such
effects prevail, be they of the snob or bandwagon type, purchase decisions are influenced by
buyers’ expectations, leading to behavior not encompassed by traditional demand theory (Ve-
blen [38], Leibenstein [22]). From an industrial organization perspective, these distinctive fea-
tures raise new questions and impose some methodological challenges. In their pioneering work
on markets with network effects, Katz and Shapiro [19] proposed the concept of fulfilled expec-
tations Cournot equilibrium (FECE), which was adopted by some of the early literature. This has
led to a number of results that distinguish network markets from ordinary ones.1

The purpose of the present paper is to provide a thorough theoretical investigation of mar-
kets with homogeneous goods and network externalities. We consider oligopolistic competition
amongst firms in a market characterized by positive (direct) network effects when the products
of the firms are perfectly compatible, so that the relevant network is industry-wide. This is mo-
tivated by both positive and normative considerations. In terms of the former, several important
industries fit the perfect compatibility framework, in particular those in the telecommunications
sector, such as fax, telephone, the Internet, but also many classical industries such as compact
discs, fashion and entertainment.2 More important are the normative grounds, which stem mainly
from the critical problem of industry take-off that new network goods are confronted with. A sin-
gle (industry-wide) network is a crucial element in surmounting the take-off hurdle, or at least
in avoiding potentially long delays before achieving success (Shapiro and Varian [31]). Indeed,
the business strategy literature has concluded, through a number of detailed case studies dealing
with the emergence of particular industries in the last thirty years, that interconnection amongst
all the firms in a network industry (i.e., a single network) is probably the most important ingre-
dient for success in launching a new network product (Rohlfs [29]). Thus a good understanding
of the single network case will shed quite some light on the incentives for compatibility faced
by firms and consumers in the case of firm-specific networks. We shall return to this key point
several times below.

In contrast to the extant literature, this paper considers general demand functions with non-
separable network effects, a critical feature if one wishes to capture pure network goods (those
with no stand-alone value, such as most telecommunication products), and the so-called feature
of demand-side increasing returns (see assumption (A5)). With pure network goods, the trivial
outcome of zero output is always a self-fulfilling equilibrium, since there will be no actual de-
mand if the market expectation is that there will be no eventual sales (in other words, nobody
wishes to be the only person around owning a phone, say). In view of this, the industry will fail
to take off at all if this is the only equilibrium, but might also end up coordinating on this worst
possible outcome when other equilibria are present. In a nutshell, this is the so-called industry
viability problem, a general treatment of which is the central concern of this paper. To this end,
an important pre-requisite is a good understanding of the issues of existence and multiplicity of

1 See Economides and Himmelberg [14], Economides [13], Shy [33], and Kwon [21]. In contrast, the earlier literature
in management science relied on dynamic models with no expectations, e.g., Oren and Smith [27] and Dhebar and
Oren [11]. See also Bensaid and Lesne [6] and Chen et al. [10], among others.

2 In some industries, each customer may have in mind his own social network only, not the overall network, when
making a purchase decision, but we follow the literature in industrial organization in ignoring this distinction.
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FECE, which can clearly discriminate between the trivial FECE and the non-trivial ones, in terms
of meaningful conditions imposed on primitives of the oligopoly model. Another aim of the pa-
per is to provide an extensive inquiry into the effects of market structure (or exogenous entry) on
market performance. Throughout, the paper takes a comparative perspective in that results are
contrasted with their Cournot counterparts, in an attempt to shed light on the distinctive features
of network industries.

The underlying approach is to impart minimal complementarity structure to the model at
hand, which achieves the twin goals of ensuring the existence of a fulfilled expectations Cournot
equilibrium while at the same time allowing clear-cut predictions on the comparative statics of
market performance with respect to the number of firms. The critical structure is imposed in
the form of two economically meaningful complementarity conditions on the primitives that
guarantee the key properties that, along a given firm’s best response, industry output increases
in rivals’ total output as well as in the expected network size. In terms of methodology, the
existence and comparative statics parts rely on lattice-theoretic techniques, but these need to be
supplemented by basic novel insights from nonsmooth analysis, in particular for the viability
analysis.3

We next provide an overview of our findings, coupled with a literature review. While existence
of FECE follows from the monotonicity structure via a double application of Tarski’s fixed point
theorem, this is of limited interest, as the underlying equilibrium may a priori be the trivial one.
To complete the analysis, we derive two sets of conditions, each of which ensures the existence
of a non-trivial equilibrium. These conditions have clear economic interpretations; they amount
to requiring relatively strong network effects near the origin or away from the origin.

Although the model is static in nature, we construct an explicit learning dynamics, mapping
consumers’ expectation of the network size to the corresponding Cournot equilibrium industry
outputs. This tatonnement-type dynamics shall serve a dual purpose. It provides a natural theoret-
ical foundation for an equilibrium concept that might be viewed as too demanding in its implicit
simultaneous determination of both firms’ behavior and the correct size of the market. The dy-
namics also serves as a convenient tool to analyze the viability of the industry. In fact, it has
tacitly been the basis of earlier informal discussions of the viability issue in the literature. Stud-
ies of telecommunications markets, such as Rohlfs [28] and Economides and Himmelberg [14],
often suggest that network industries typically have three equilibria. Under this natural dynamics,
the two extreme equilibria are stable in expectations and the middle equilibrium (usually called
critical mass) is unstable. The argument behind this structure is quite simple for pure network
goods: If consumers’ initial expectation is below the critical mass, so that few buyers are ex-
pected to acquire the good, then the good will be of little value to consumers and few of them
will end up buying it. These low sales in turn further depress consumers’ expectations through
the above dynamics, and the market unravels towards the trivial (or no-trade) equilibrium, giv-
ing rise to a failure to take off for the industry. However, if expectations are higher to start with
and network effects are relatively strong, higher equilibria will also be possible. This argument
is often used to explain the start-up problem in network industries, or the difficulties faced by
incumbent firms in attempting to generate enough expectations to achieve critical mass. In this
setting, due to increasing returns on the demand side and to the need for expectations, multiple

3 Relevant work includes Topkis [36], Vives [39], Milgrom and Roberts [24], Milgrom and Shannon [25],
Echenique [12], Amir [1,3], Amir and Lambson [4], and Kwon [21].
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equilibria and path dependence (the notion that early events can have significant long run effects)
are the norm, rather than the exception.

An important aim of the present paper is to shed light on the role of market structure as a de-
terminant of the viability of a network industry, a novel and fundamental issue that, surprisingly,
has not been addressed in the theoretical literature. We find that the presence of more firms in
the market always enhances industry viability, by lowering the critical mass needed to avoid the
trivial equilibrium. The same conclusion holds for exogenous technological progress. These two
effects provide a plausible explanation of several recorded failures and successes in attempts to
launch new network goods, as reported in some detail in other sections, in particular with re-
gard to the history of the fax industry. Indeed, Rohlfs [29] forcefully argues that interconnection
between suppliers of a network good is a critical feature that is at the heart of past successful
new industry launches, sometimes in conjunction with technological improvements.4 Rohlfs’
detailed case studies provide strong evidence for the policy relevance of our theoretical results
on viability.

Regarding market performance, the basic structure leads to an industry output that increases
in the number of firms, n, as in standard Cournot competition. As this also implies an increase in
the equilibrium network size, market price need not decrease with more competition, i.e., quasi-
competitiveness need not hold here. The most drastic departure from standard oligopoly lies
in the effects of entry on per-firm profits. Whenever per-firm output and market price increase
(decrease) with n, per-firm profits increase (decrease) in n as well (see Economides [13]). The
conclusion that competition may increase each firm’s profit is quite provocative and leads to sev-
eral important implications, both from theoretical and policy-oriented perspectives. The effects
of entry on social welfare and consumer surplus also display some distinctive features relative
to standard Cournot competition. Demand-side economies of scale broaden the conditions under
which social welfare increases with more entry, but they may have the opposite effect on con-
sumer surplus whenever the marginal increase of price due to a higher network size increases
with output. Our results build on the perception already prevalent in the literature that standard
results on the workings of competition can easily be reversed in network industries. Since, for
each dimension of market performance, the conventional intuitive outcome and its opposite can
both hold in robust ways, it is highly desirable to arrive at a clear understanding of the respective
specific market characteristics under which these two outcomes prevail.5

As a consequence, a number of policy issues will need revisiting in network industries, when-
ever market characteristics are such that unconventional outcomes prevail. There is more scope
for pro-competitive cooperation or coordination by firms in network markets. There will be a
pronounced tendency towards less entry deterrence activities; a higher propensity for licensing,
probably coupled with lower royalty rates or licensing fees; less patenting or a relatively more
permissive attitude towards patent infringement by a firm’s rivals; and more joint ventures for
research and development towards common standards, improved product performance and lower
production costs. Proper reaction to these new incentives for coordinated action by market com-
petitors might well require a significant overhaul of existing antitrust policy (Shapiro [30] and
Katz and Shapiro [20]).

4 This conclusion does not apply to network industries that do not lend themselves to interconnection, due to a variety
of reasons, which may be connected to technological, industry-specific, geographic, linguistic, or other factors. Examples
include bank deposits (Matutes and Vives [23]), local clubs, national associations, etc.

5 Boone [9] provides interesting insights into the difficulties of deriving meaningful measures of competition in regular
industries. Our results will suggest that this task will be far more daunting in network industries.
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Another noteworthy aspect of this paper is that it offers three explicit examples with easy
closed-form solutions to illustrate in a simple way some of the key conclusions. In particular,
Example 1 captures with closed-form solutions most of the relevant features often associated
with the telecommunications industry in the literature, as well as our new results on viability.

The paper is organized as follows. Section 2 presents the model, the equilibrium concept and
the assumptions. Section 3 deals with existence of equilibrium. Section 4 formalizes the concept
of industry viability and its determinants. Section 5 analyzes market performance as a function
of the number of firms. Section 6 concludes, and Section 7 contains all the proofs.

2. The model

This section presents the standard oligopoly model with network effects along with the com-
monly used equilibrium concept due to Katz and Shapiro [19]. We consider a static model of
oligopolistic competition in industries with positive network effects, wherein consumers’ will-
ingness to pay is increasing in the number of agents acquiring the same good. The firms’ products
are homogeneous and perfectly compatible with each other, so there is a single network compris-
ing the outputs of all the firms in the industry. Consumers are non-strategic, but the presence of
externalities in demand in a static setting calls for some form of expectations in the formulation
of demand.

2.1. The model and the solution concept

The market consists of n identical firms, with cost function C(.), facing the same inverse
demand function P(Z,S), where Z denotes the aggregate output in the market and S represents
the expected size of the network. Postulating that each consumer buys at most one unit of the
good, S also stands for the expected number of people acquiring the good.

For a given S, a firm’s profit function is π(x, y,S) = xP (x + y,S) − C(x), where x is the
firm’s output level, and y is the joint output of the other (n−1) firms. Its reaction correspondence
is

x(y,S) = arg max
{
π(x, y,S): x � 0

}
. (1)

Each firm chooses its output level to maximize its profits under the assumptions that (i) con-
sumers’ expectations about the size of the network, S, is given; and (ii) the output level of the
other firms, y, is fixed. Alternatively, we may think of the firm as choosing total output Z = x+y,
given the other firms’ cumulative output, y, and the expected size of the network, S, in which
case, with π̃ (Z, y,S) = (Z − y)P (Z,S) − C(Z − y), its reaction correspondence is

Z(y,S) = arg max
{
π̃(Z, y,S): Z � y

}
. (2)

Consistency requires Z(y,S) = x(y,S) + y.
At equilibrium, all relevant quantities x, y,Z and π will be indexed by the underlying number

of firms n, e.g., we shall denote by Zn the equilibrium industry output corresponding to n firms
in the market, and xin the equilibrium output of firm i. When clear from the context, we will
avoid the subindex i in the latter variable.

An equilibrium in this game is a vector (x1n, x2n, . . . , xnn) that satisfies the following condi-
tions

1. xin ∈ arg max{xP (x + ∑
j �=i xjn, S) − C(x): x � 0}; and

2.
∑

xin = S.
i
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Katz and Shapiro [19] called this concept “Fulfilled Expectations Cournot Equilibrium (or
FECE)”. It requires that both consumers and firms correctly predict the market outcome, so that
their beliefs are confirmed in equilibrium. While strategic in their choice of outputs in the usual
Cournot sense, firms are “network-size taking” in their perceived inability to directly influence
customers’ expectations of market size. One plausible justification for this is that firms are unable
to credibly commit to output levels that customers could observe and reliably use in formulating
expectations about network size (Katz and Shapiro [19]). Naturally, the plausibility of the FECE
concept increases with the number of firms present in the market.

Viewing S as an inverse demand shift variable, the first line (or condition 1 above) just
describes the equilibrium in standard Cournot competition with exogenously fixed S. Let the cor-
responding Cournot equilibrium industry output be denoted Qn(S), which defines a multi-valued
mapping in general (since no uniqueness of Cournot equilibrium will be assumed). Adding con-
dition 2, an aggregate output Zn ∈ Qn(S) constitutes a FECE industry output if it confirms the
expected level of sales (or network size) that generated it, i.e., has Zn = S. Thus, if we graph
Qn(S) as a (multi-valued) function of S, the FECE industry outputs coincide with the fixed
points, or the points where this correspondence crosses the 45◦ line. This representation will
play a key role in both the existence proof and the viability analysis.

An alternative, fully game-theoretic, interpretation of this equilibrium notion is in the context
of a two-stage game, wherein a market maker (or a regulator) announces an expected network
size S in the first stage, and firms compete in Cournot fashion facing inverse demand P(Z,S) in
the second stage. If the market maker’s objective function is to minimize |S − Qn(S)|, then to
any subgame-perfect equilibrium of this game corresponds a FECE of the Cournot market with
network externalities, and vice-versa. This simple conceptualization of the FECE solution also
provides one natural approach for arriving at a FECE with the participation of a market maker,
and in case of multiple equilibria, also for selecting a particular FECE.6

The FECE concept has a dual nature: It consists of the conjunction of a standard Cournot
equilibrium and a rational expectations requirement. (The latter is not related in any way to un-
certainty but rather to the determination of the true final demand that will prevail in the economy.)
As it pins down both firms’ strategic behavior in the market and the coordination of expecta-
tions as to the right market size, all in one stroke within a static model, one might feel that
this solution concept is excessively ambitious.7 In other words, it attempts to compress an in-
trinsically dynamic succession of building blocks into a static representation. Partly to address
this natural critique, a theoretical foundation for FECE is provided in the form of a simple my-
opic learning dynamics that converges to any Cournot-stable FECE from a suitable basin of
attraction.8 This expectations-augmented Cournot-type dynamics is also intended as a natural
vehicle for investigating the important issue of industry viability, which is critical for pure net-
work goods.

This dual nature also implies that FECE is more appropriately classified not as a purely
noncooperative solution concept, but rather as one capturing co-opetition (Brandenburg and

6 We shall briefly return to this point in the Conclusion to argue that the U.S. government-sponsored launch of the
Internet fits this regulation-based description of the model.

7 At the same time, this concept treats consumers in a reduced-form manner as being fully non-strategic.
8 Some studies provide explicitly dynamic models of network competition amongst firms, some of which may also be

viewed as theoretical foundations for the present model (see, e.g., Dhebar and Oren [11], Bensaid and Lesne [6], and
Mitchell and Skrzypacz [26], among others). In other words, the FECE concept may be viewed as a static short-hand or
convenient reduced form for a fully-fledged, explicitly dynamic, process that need not rely on any form of expectations.



R. Amir, N. Lazzati / Journal of Economic Theory 146 (2011) 2389–2419 2395
Nalebuff [8]). The familiar inter-firm rivalrous relationship inherent in Cournot competition is
intertwined with an inter-firm partnership in terms of jointly creating sufficiently high expec-
tations for the industry prospects and building up a large common network of consumers. The
overall outcome is an intricate and interesting case of co-opetition, with quite a few provocative
departures from ordinary forms of market competition. The mixed nature of the co-opetition out-
comes is unambiguously confirmed by the results below on industry viability and on the effects
of increased competition on firms’ well-being (in particular in examples below). In fact, the con-
gruence between the main results of this paper and some central case studies for the business
strategy literature provides important real world evidence in support of FECE as a suitable static
solution concept for network industries.

An alternative solution concept has been proposed for environments where firms possess the
ability to make credible commitments to output levels. In such cases, standard Cournot equilib-
rium with inverse demand P(Z,Z) would be a more appropriate concept. A direct comparison
between these two concepts appears in Katz and Shapiro [19], who find that firms’ market be-
havior is more aggressive, leading to a higher industry output than under the FECE concept, an
intuitive outcome. Ultimately, the issue as to which of these concepts is more appropriate for
network industries is an empirical matter, and the answer is likely to vary according to indus-
try characteristics, in particular those relating to firms’ ability to credibly commit (observability
conditions, firm reputation, government participation, marketing and public awareness of the
product, etc.).

2.2. The basic assumptions

We list the assumptions used in this paper, starting with a set of standard ones, followed by
more substantive conditions. Whenever well-defined, we denote the maximal and minimal points
of a set by an upper and a lower bar, respectively. Thus, for instance, Zn and Zn are the highest
and lowest industry equilibrium outputs (i.e., fixed points of Qn(S)) with n firms in the market.

Denote by W(Z,S) �
∫ Z

0 P(t, S) dt − nC(Z/n) the Marshallian social welfare when aggre-
gate output is Z, all firms produce the same quantity and the expected size of the network is S.
Similarly, consumer surplus is CS(Z,S) �

∫ Z

0 P(t, S) dt − ZP(Z,S).
The standard assumptions are

(A1) P(. , .) is twice continuously differentiable, P1(Z,S) < 0 and P2(Z,S) > 0.
(A2) C(.) is twice continuously differentiable and increasing, and C(0) = 0.
(A3) xi � K , for each firm i.

These are all commonly used assumptions, including P2(Z,S) > 0, which reflects positive
network effects, or the property that consumers’ willingness to pay increases in the expected
number of people who will buy the good. (A3) imposes capacity constraints on the firms, a
convenient way to force compact output sets in a setting where firms may otherwise wish to
produce unbounded output levels. No results rely in any way on K taking on any particular set
of values.

We allow for the possibility that P(Z,0) ≡ 0, which characterizes pure network goods, or
those with no stand-alone value, such as most telecommunications devices (telephone, fax, and
e-mail). We also allow for mixed network goods, or those with strictly positive stand-alone value,
for which P(Z,0) > 0, such as various types of software, fashion goods, and entertainment goods
and services.
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The next two assumptions form the key complementarity structure of the model.

(A4) �1(Z,y,S) � −P1(Z,S) + C′′(Z − y) > 0 on ϕ1 � {(Z,y,S): Z � y, y � 0, S � 0}.
(A5) �2(Z,S) � P(Z,S)P12(Z,S) − P1(Z,S)P2(Z,S) > 0 on ϕ2 � {(Z,y,S): Z � y,

y � 0, S � 0}.

In terms of the model structure, (A4) guarantees that the profit function π̃ (Z, y,S) has strictly
increasing differences in (Z,y), so Z(y,S) increases in y, or a firm’s best-response has slopes
greater than −1 in other firms’ quantity for fixed S.9 Likewise, (A5) ensures that log π̃ (Z, y,S)

has strict increasing differences in (Z;S), so that Z(y,S) increases in S.10

In terms of economic interpretation, (A4) allows for limited scale economies in production,
and has been justified in detail in Amir and Lambson [4]. Although our analysis does incorpo-
rate this generality on the production side, we shall not stress this point when discussing our
conclusions so as to keep focus on the demand side features of the model.

The novel assumption here is (A5), which has the precise economic interpretation that the
elasticity of demand increases in the expected network size S.11 In his pioneering study of the
elementary microeconomic foundations of interdependent demands, Leibenstein [22] suggested
that demand is more elastic in network markets than in ordinary markets because individual
reactions to price changes are followed by additional reactions, in the same direction, to each
other’s change in consumption. Within the present simple, static representation of demand for a
good with network effects, (A5) may be viewed as a way to formalize the cumulative outcome
of these mutually reinforcing effects on aggregate demand via self-fulfilling expectations of the
network size. Another plausible interpretation of (A5) is that it provides a natural way to model
the concept of demand-side scale economies that is often postulated as a characteristic of network
industries: Higher expectations of ultimate market size increase consumers’ willingness to pay
and make demand more elastic.

(A5) also embodies a key respect in which the present paper departs from the extant static
literature, much of which deals with the case of additively separable network effects, defined by12

P(Z,S) = p(Z) + g(S). (3)

While this specification clearly satisfies the condition in (A5), it automatically excludes the case
of pure network goods (i.e., P(Z,0) = 0 for all Z, which is incompatible with (3)), for which
the role of expectations is often critical, making industry viability a crucial issue. Since this is-
sue is central to the focus of the present paper, we cannot adopt the simplifying assumption of
separable network effects.

On the other hand, the case of multiplicative network effects, defined by P(Z,S) = p(Z)g(S),
a specification that can in particular capture pure network goods (whenever g satisfies g(0) = 0),
also satisfies (A5) as a limit case (i.e., with equality for all Z and S).13 This multiplicative form

9 Also see Hoernig [18] for an extension to differentiated-goods industries.
10 All the lattice-theoretic notions and general results used in this paper are covered in Topkis [37] or Vives [40].
11 The price elasticity of demand is −(

∂P (Z,S)
∂Z

Z
P(Z,S)

)−1 = −(Z
∂ logP(Z,S)

∂Z
)−1, which is increasing in S if and only

if logP(Z,S) has increasing differences in (Z,S) (Topkis [37], p. 66).
12 See Katz and Shapiro [19], Economides and Himmelberg [14], and Economides [13] among others.
13 The strict inequality in (A5) is purely for convenience, and our conclusions are valid with a weak inequality instead.
The main implication of the latter assumption would be that only the extremal selections of the argmax Z(y,S) are
increasing in S, instead of all the selections being strictly increasing in S (Amir [2] and Edlin and Shannon [15]).
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captures situations where a higher expected network size keeps the elasticity of demand invari-
ant, thus generating a pure upward shift in demand. As a simple example of this specification,
consider the inverse demand P(Z,S) = S/Zα , α > 0.

3. Existence of equilibrium

In this section we provide a general equilibrium existence result, exploiting the minimal
monotonic structure of the model reflected in (A4)–(A5). As the trivial (zero-output) equilib-
rium is often part of the equilibrium set, we derive a second result that relies on additional
conditions to guarantee the existence of a non-trivial equilibrium, i.e., one with strictly posi-
tive industry output. Under these extra conditions, the market has some chance to emerge at
equilibrium.

We begin with the central monotonicity result, which is a direct consequence of (A4)

and (A5).

Lemma 1. Every selection of the best-response correspondence Z(y,S) increases in both y

and S.

This lemma leads to an abstract existence result for symmetric equilibrium, along with the
fact that the same assumptions preclude the possibility of asymmetric equilibria.

Theorem 2. For each n ∈ N , the Cournot oligopoly with network effects has (at least) one sym-
metric equilibrium and no asymmetric equilibria.

The monotonicity structure behind the existence theorem will also drive other results of this
paper, many of which have a comparative statics flavor. Comparing (A1)–(A5) with the as-
sumptions in standard Cournot oligopoly, the only extra requirement is that the price elasticity
of demand increases with the network size, (A5), taking P2(Z,S) > 0 as a natural property of
network markets.

Recall that Qn(S) denotes the industry output equilibrium correspondence of standard
Cournot competition (with exogenous S), with n firms in the market. In Section 2 we observed
that a fixed point of Qn(S) constitutes a FECE. Conditions (A1)–(A4) guarantee that Qn(S) is
non-empty using the results of Amir and Lambson [4]. Then the added benefit of (A5) is that the
extremal selections of Qn(S), Qn(S) and Qn(S), increase in S, so that the existence of FECE

follows via Tarski’s Theorem applied to Qn(S) or Qn(S). This idea also plays a key role in the
proof of existence of a non-trivial equilibrium below.

It is well known that in network markets, the trivial (zero output) outcome is often an equi-
librium. This arises when the network good has little stand-alone value, i.e., P(Z,0) is small.
Given any such good, if end users believe no one else will acquire it, then the good will have no
value, and the trivial outcome will necessarily be part of the equilibrium set. Telecommunications
industries, such as fax, phone and e-mail, typically exhibit this characteristic.

In such markets, Theorem 2 is not of much interest since the underlying equilibrium may
a priori be the trivial one. To complete the analysis, we give a simple characterization of the
trivial equilibrium and then add extra assumptions to guarantee the existence of a non-trivial
one.

Lemma 3. The trivial outcome is an equilibrium if and only if xP (x,0) � C(x) for all x ∈ [0,K].
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This lemma simply says that the trivial outcome is part of the equilibrium set if and only if,
when the common expectation (amongst firms and consumers) about the size of the network is
zero, and a firm believes the other firms will produce no output, the best it can do under the
required condition is to produce zero as well. Clearly, for pure network goods, this result always
holds.

To provide conditions for the existence of a non-trivial equilibrium, we use a fictitious objec-
tive function that achieves its maximum at a Cournot equilibrium industry output level, for given
S, as shown in Bergstrom and Varian [7] for standard Cournot oligopoly.14 Define

Π(Z,S) � n − 1

n

[ Z∫
0

P(t, S) dt − nC(Z/n)

]
+ 1

n

[
ZP(Z,S) − nC(Z/n)

]
. (4)

For given S, this function is just a weighted average of welfare and industry profits, with re-
spective weights 1

n
and n−1

n
, which may be viewed as a fictitious objective function for Cournot

oligopoly.

Theorem 4. A non-trivial equilibrium exists if at least one of the following is satisfied

(i) 0 /∈ Qn(0), i.e., zero is not an equilibrium output (or xP (x,0) > C(x) for some x ∈ [0,K]);
(ii) 0 ∈ Qn(0), P(0,0) = C(0) and P1(0,0) + P2(0,0) > [−P1(0,0) + C′′(0)]/n; or

(iii) 0 ∈ Qn(0), C′′(.) � 0 and P(Z,S) + Z
n
P1(Z,S) � C′(Z/n) for some S and all Z � S.

Theorem 2 guarantees equilibrium existence. Hence, if zero is not part of the equilibrium set,
there must be an equilibrium with a strictly positive industry output, and Theorem 4(i) follows.
This applies only to network goods with sufficiently high stand-alone value (cf. Lemma 3), e.g.,
specific computer software, some fashion goods, web sites, etc.

The extra requirements in Theorem 4(ii) guarantee that, although Qn(0) = 0, Qn(S) starts
above the 45◦ line near zero, i.e., Q′

n(0) > 1. The existence of a non-trivial equilibrium follows
as the extremal selections of Qn(S) increase in S. Formally, this derives from applying Tarski’s
Theorem to any of the extremal selections of Qn(S) for S ∈ [ε,nK], and some ε > 0 small
enough. Observe that, ceteris paribus, the condition of part (ii) is more likely to hold with a
stronger network effect around the origin (as captured by P2(0,0)), or with a higher number of
firms in the market. In fact, by (A4), the condition requires that P1(0,0) + P2(0,0) > 0.

The main condition in Theorem 4(iii) has a clear economic meaning: There must be some
network size S such that, along a symmetric path for firms, a firm’s marginal revenue exceeds
marginal cost for all Z � S. As this amounts to Π1(Z,S) � 0, the same interpretation using
marginal revenue also holds for the planner’s problem. It follows that the argmax Qn(S) of
Π(Z,S) is above the 45◦ line at the given S. Then a non-trivial equilibrium exists by Tarski’s
Theorem applied to Qn(.) mapping [S,nK] to itself.15 The economic interpretation of this con-
dition is also that network effects must be sufficiently strong, but for some S > 0, and/or the

14 Their simple proof just compared the first order conditions of the two problems, as their setting implied unique
solutions for both. Lemma 16 in Section 7 shows that any argmax of Π is a symmetric Cournot equilibrium in our more
general setting. This conversion of a game to a maximization problem is crucial to the proof of Theorem 4(iii). A similar
result appeared earlier in Spence [34].
15 This condition is stronger than what is actually needed, which is that Π(Z′, S) � Π(Z,S) for some S, some Z′ � S

and all Z � S. We prefer to use the stronger condition due to its more transparent economic interpretation.
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number of firms in the market must be large enough. Indeed, taking the derivative of the left-
hand side of condition (iii) with respect to S yields P2(Z,S) + Z

n
P12(Z,S). Assuming this to

be strictly positive and large is related to requiring that (A5) holds in a strong sense (i.e., with
sufficient slack), which would boil down to requiring that the price elasticity of demand be suf-
ficiently responsive to the network size.16 This is a plausible measure of the strength of network
effects.

In a nutshell, the existence of a non-trivial equilibrium is guaranteed if the stand-alone value
of the good is high. Otherwise it depends in a crucial way on the strength of the network effect
around the origin (as captured by P2(0,0)) as well as away from the origin, and on the number
of firms in the market.

The proof of Theorem 4 uses the following intermediate result, which also plays a key role in
the viability analysis (Section 4).

Lemma 5. If 0 ∈ Qn(0), then Qn(0) = 0, i.e., Qn(0) is single-valued. If in addition P(0,0) =
C′(0), then Q′

n(0) exists, is also single-valued and right-continuous at 0, and

Q′
n(0) = −nP2(0,0)

(n + 1)P1(0,0) − C′′(0)
. (5)

If the trivial equilibrium is not interior, i.e., if P(0,0) < C′(0), then Qn(0) = 0 and Q′
n(0) = 0.

Thus, though Qn(.) is a correspondence, when 0 is part of the equilibrium set, Qn(.) is single-
valued at the origin. If in addition the trivial equilibrium satisfies the first order condition for a
maximum, i.e., P(0,0) = C′(0), then the slope of this correspondence at 0 is given by (5).17

Multiple equilibria in markets with network effects are more of a norm than an exception.
They are due to the positive feedback associated with expectations: If consumers believe the good
will not succeed, it will usually fail. On the contrary, if they expect it to succeed, it usually will.
By assuming P(Z,S) is log-concave in Z, one obtains uniqueness of Cournot equilibrium for
each S, so Qn(.) is single-valued and continuous. With network effects, much stronger conditions
are required for uniqueness of FECE, as a single-valued Qn(.) can cross the 45◦ line several
times. Since our methodology easily handles multiple equilibria, there is no need to impose the
overly restrictive uniqueness conditions.

4. Industry viability

Building directly on the results on the existence of non-trivial equilibrium, this section pro-
vides an extensive treatment of industry viability, via a formalization of expectations dynamics
and the associated stability analysis of the multiple FECE, in particular of the trivial one. This
dynamics maybe viewed as a natural extension of standard Cournot dynamics, which integrates
iterative expectations in the usual myopic setting. As such, it constitutes an elementary theoret-
ical foundation for the FECE concept. We then derive insightful novel results on the effects of
exogenously changing market structure and technological progress on the viability of an industry.

16 We could use the condition P2(Z,S) + ZP12(Z,S) > 0 in lieu of (A5) throughout the paper. This would make π̃

supermodular instead of having the single-crossing condition in (Z;S), thus yielding the same conclusions.
17 Lemma 5 reflects the extent to which the standard argument of (the smooth version of) the Implicit Function Theorem
can be carried over to a setting in which the usual assumption of strict concavity of the objective is replaced by a
supermodularity condition (so the argmax is an increasing correspondence as opposed to a differentiable function).



2400 R. Amir, N. Lazzati / Journal of Economic Theory 146 (2011) 2389–2419
Fig. 1. Viability and basin of attraction of the trivial equilibrium.

4.1. A natural dynamics for the FECE concept

Many studies suggest that Fig. 1 reflects the structure of specific telecommunications in-
dustries. The underlying game there displays three possible equilibria, the trivial equilibrium,
a middle unstable equilibrium (usually called critical mass, CM), and a high stable equilibrium.
The intuition behind this configuration is quite simple: If all the consumers expect that no one
will acquire the good, then the good has no value and no one will end up buying it, resulting in
the zero equilibrium output for the industry. However, if expectations are high enough to start
with, another, non-trivial, equilibrium will prevail.

Whenever the trivial equilibrium is locally stable in expectations (as in Fig. 1), the market
will never emerge if the initial expected network size is too low to start with. Under such condi-
tions, even if the industry does get going, Cournot equilibrium on the basis of small expectations
cannot lead firms to produce enough output to generate prospects beyond the critical mass, and
the industry will unravel through a declining process towards the trivial equilibrium. In view
of the equilibrium concept adopted here, the incumbent firms are simply unable to influence
these expectations to circumvent this difficulty. This argument is commonly invoked to capture
the start-up problem that frequently arises in these markets, as a “chicken and egg” dilemma.
Oren and Smith [27] offer an early discussion of this phenomenon in electronic communications
markets.

The dynamic process underlying this analysis can be formalized through the following expec-
tations/network size recursion, starting from any initial S0 � 0,

Sk = Qn(Sk−1), k � 1 (6)

where Qn denotes the maximal selection of Qn. The analysis that follows is also valid for the
minimal selection Qn, and most results work for any monotonic selection of Qn.

This process thus begins with an initial expectation S0, then postulates that firms react by
engaging in Cournot competition with demand P(Z,S0), leading to an industry output Qn(S0).
The latter will in turn determine consumers’ expectation S1 = Qn(S0), and the process repeats
indefinitely. This yields a sequential adjustment course in which consumers and firms behave
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myopically with respect to the size of the network. Taking a single-valued selection of Qn(.)

amounts to selecting one particular Cournot equilibrium for each given S. Under this dynamic
process, the trivial equilibrium is stable if there is a right neighborhood V of 0 such that for all
S0 in V , the orbit Sk = Qn(Sk−1) → 0 as k → ∞.18

When zero is an equilibrium, let Vn denote its basin of attraction when there are n firms in the
market, i.e., the set of values of S0 for which the trivial equilibrium is the limit of (6).

Remark 1. In view of Lemma 5, when zero is a FECE, Qn(.) is continuously differentiable at 0.
Therefore, assuming henceforth that this derivative is (generically) not equal to 1, it follows that
zero is an isolated fixed-point (for a formal proof, see, e.g., Granas and Dugundji [17], pp. 326–
327). Since in addition Qn(S) is increasing in S, Vn is an interval.

Define the critical mass (CM) as the smallest initial expectation such that for all S0 > CM ,
the orbit given by (6) converges to a nonzero FECE.19 In other words, CM = supVn, so Vn can
be of the form [0,CM] or [0,CM). The trivial equilibrium is globally stable, locally (but non-
globally) stable, or unstable according as Vn = [0, nK], Vn � [0, nK], or Vn = φ, or equivalently
according as CM = nK , nK > CM > 0, or CM = 0.

4.2. Industry viability and its determinants

We begin by formalizing the concept of viability used in this paper, illustrated in Fig. 2.

Definition 1. An industry is (i) uniformly viable if zero output is either not part of the equi-
librium set or it is an unstable equilibrium; (ii) conditionally viable if zero output is a locally
(but non-globally) stable equilibrium; and (iii) nonviable if zero output is a globally stable
equilibrium.

In other words, an industry is (i) uniformly viable if the dynamic process (6) converges to a
non-trivial equilibrium from any initial expectation S0 about the size of the network, (ii) con-
ditionally viable if the same convergence takes place from high enough S0, and (iii) nonviable
if (6) always converges to 0. It is intuitive that the maximal (minimal) selection of Qn(.) is the
most (least) favorable for the viability of the industry.

The next result provides sufficient conditions for the three possible viability outcomes, by
directly linking them with the sufficient conditions for a non-trivial equilibrium provided in The-
orem 4 (the proof is omitted due to its similarity with that of Theorem 4).

Proposition 6. An industry is (i) uniformly viable if either Theorem 4(i) or (ii) holds; (ii) condi-
tionally viable if Theorem 4(iii) holds; and (iii) nonviable if and only if zero output is the unique
equilibrium.

18 The notions of stability used here are the standard ones applied to the one-dimensional dynamic system (6).
19 Such orbits always converge by the Monotone Convergence Theorem, since Qn(.) is increasing. This limit FECE
will always be a fixed point of the correspondence Qn(.) since the latter is upper hemi-continuous (see the proof of
Lemma 5 in Section 7), but may fail to be a fixed point of the selection Qn(.) in some cases where CM is not a point of
continuity of Qn(.). This definition captures the essence of critical mass in this context, and is a suitable extension of the
usual definition of CM to this more general setting where discontinuities are induced by multiple equilibria.
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Fig. 2. Industry viability.

Thus, just like the existence of non-trivial equilibrium, viability depends in a crucial way on
the stand-alone value of the good, on the strength of the network effects at the early start of the
industry, on the strength of network effects away from the origin (i.e., after the build-up of some
consumer base), as well as on the number of firms in the market. Last but not least, viability
depends on the initial expectations level S0. For nonviable industries, the latter dependence is
only transient and the dynamics is actually of an ergodic nature, with the death of the industry
being the ultimate outcome. A similar conclusion holds for uniformly viable industries in case
of a unique non-trivial equilibrium; otherwise, S0 determines which non-trivial equilibrium the
industry will converge to.

In the most interesting scenario as captured by Proposition 6(ii), whenever the stand-alone
value is low and network effects are weak near the origin but strong away from it, the industry is
conditionally viable, so the location of the initial expectations level S0 relative to the critical mass
emerges as the critical determinant of actual viability. This constitutes an extreme form of path
dependence due to the all-or-nothing character of the final outcome: Historic factors (or early
events) matter greatly for the ultimate fate of the industry. Such path dependence is commonly
associated with increasing returns in diverse contexts in economics (e.g., Arthur [5]). Here the
increasing returns property lies in the demand-side externalities (assumption (A5)), when these
are strong enough as implied by the conditions in Proposition 6.

These results shed light on a commonly observed strategy that firms in network industries
often follow as a way to create a stand-alone value thereby inducing uniform viability: The
bundling of multiple functions in one product, with at least one of them ensuring a positive stand-
alone value. Thus later fax machines often include a copier; and Blu-ray discs enable storage,
recording, rewriting and playback of high-definition video, along with compatibility with CDs
and DVDs. These super-products are far less vulnerable to the start up problem than pure network
goods.
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In order to derive some useful comparative statics of viability, we shall need to compare two
different situations for the same industry. To this end, a simple option is to think of the size of
the basin of attraction of zero as an inverse measure of industry viability.20

Definition 2. The viability of an industry increases if the critical mass (CM) decreases.

The next result, a central finding of this paper, captures the effects of two key determinants
of industry viability. Here, exogenous technological progress (or process R&D) is modeled as a
decrease in α for the cost function αC(.).

Theorem 7. With more firms in the market and/or technological progress, i.e., as n increases
and/or α decreases, (i) Qn(.) shifts up; and (ii) the viability of an industry increases.

Thus, market structure may play a critical role in industry viability: Having more firms around
implies a lower critical mass would be needed to launch a given industry.21 The underlying intu-
ition is intimately connected to the FECE concept. Consider the natural question: If S0 happens
to be below the critical mass, what prevents the existing firms from attempting to act as if there
were more of them by producing a higher output level in an effort to influence consumers’ ex-
pectations of the network size upwards? In a context where the appropriate solution concept is
FECE, firms cannot commit to their desired output levels in a credible way, and, likewise, at-
tempting to inflate their number by committing to a higher output would also not be credible,
i.e., it would not constitute behavior compatible with the FECE concept.

That technological progress also lowers the critical mass that would be needed to launch an
industry is more in line with standard intuition from ordinary markets.

In industries with multiple firms having their own versions of the same general good, this
theorem provides a clear explanation as to why firms often settle for full compatibility between
their products, instead of incompatibility. Their objective is to generate a single industry network
that would be viable, when separate networks with one firm each would not be. The business
strategy literature offers many case studies that can be instructively reviewed through the lens of
the present results on viability, as we now argue.

Several notable failures at product launch by well-established firms confirm that the take off
problem is a serious real-world concern for network industries. These flops include Picturephone
by AT&T in the 1970s, digital compact cassettes by Philips and Matsushita in the 1980s, digital
audiotapes by Sony in Japan in the late 1980s, early e-mail systems in the 1980s, and minidiscs,
among other products. Rohlfs [29] identifies the failure to “interconnect” or develop one unified
network of consumers as a critical ingredient behind most of these flops.

One well known success story is the case of Sony and Philips, two fierce competitors that
jointly developed one industry standard for compact discs in the 1980s, and licensed the standard
to other entrants on favorable terms. This led to an exemplary launch of their common standard

20 Recall that viability (and thus CM) depends on the equilibrium selection under which the industry operates. The

selections Qn and Qn correspond to the most and least optimistic scenarios in terms of viability. Nevertheless, one

implication of Lemma 5 is that an industry is uniformly viable according to Qn if and only if it is according to Qn .
21 When CM is a fixed point of Qn , the result of part (ii) corresponds to the Correspondence Principle (Echenique
[12]). However, Theorem 7 does not make any such assumption about CM . We thus provide a novel and simple proof
that works even when CM is not a point of continuity of Qn.
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(Shapiro [30], Rohlfs [29]), despite the need to displace the existing inferior technology of LP
records.

This comparative statics result can also shed some light on well known dynamic episodes
of multiple attempts at product launch and market formation. The most instructive example is
the fax industry, which took nearly one and a half centuries beyond the discovery of the initial
technology in the 1840s to achieve true take off (Rohlfs [29]). After a number of false starts
with firm-specific networks, it took several technological improvements of the fax machine and
a significant drop in production costs for the industry to achieve true take off in the 1980s.22 In
particular, a critical event in the evolution of this industry is the agreement achieved only in 1979
by the major firms to “interconnect” or to make their machines fully compatible, thus resulting
in one very large network of users. This case study also indirectly provides some support for
the relevance of FECE as a solution concept in network industries. Each subset of firms initially
running a separate network failed to break out of its own small consumer base, which suggests
that these firms were unable to have a decisive influence on the pessimistic expectations of their
specific consumer base. Only upon interconnection or (agreement on a common standard) were
there sufficiently many firms in one overall network to take advantage of the positive feedback
effects and break through the initial stalemate. Thus in this illuminating story, the conjunction of
the two factors described in Theorem 7 was needed to achieve long run viability.

Remark 2. Using insights from Theorems 4 and 7, two important threshold numbers of firms
can be derived, those at which an industry undergoes a qualitative change in terms of viability.
The first would cause the industry to switch from being nonviable to conditionally viable, and
the second from the latter to uniformly viable, thus eliminating the risk of failed take off. Similar
remarks on the effects of technological progress can be derived. This is left to the reader.

On the other hand, if P1(0,0) + P2(0,0) � 0, having more firms in the market can improve
the viability of an industry but the industry can never attain uniform viability for any n! Indeed,
it follows from Lemma 5 that in this case, one always has Q′

n(0) < 1 for all n, so that 0 is
a locally stable equilibrium for all n. This result is not surprising in light of the established
intuitive link between industry viability and the strength of network effects, as the condition
P1(0,0) + P2(0,0) � 0 clearly stands for weak network externalities near 0.

The next example illustrates various aspects of the effects of n on viability in Theorem 7.

Example 1. Let P(Z,S) = exp(− 2Z
exp(1−1/S)

) and assume no production costs.
Each firm’s reaction function is x(y,S) = (1/2) exp(1 − 1/S). Hence, Cournot industry out-

put given S is given by the function Qn(S) = (n/2) exp(1 − 1/S). Setting Qn(S) = S for
n = 1,2,3,4, the FECE industry outputs are easily calculated as

Z1 = {0}, Z2 = {0,1}, Z3 = {0,0.457,2.882} and Z4 = {0,0.373,4.311}.
The graphs of the functions Qn(S) for n = 1,2,3,4 are shown in Fig. 3.

Here, the trivial equilibrium is stable for all values of n, at least locally. With monopoly
(n = 1), the trivial equilibrium is the only one, so the industry is nonviable. With one extra firm,
a non-trivial equilibrium appears and the industry becomes conditionally viable but only barely,

22 These technological improvements include the speed of transmission and the suppression of noxious smells, quality
upgrades that cannot be accounted for in the present model, other than as upward shifts in the demand function.
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Fig. 3. Viability and market structure.

since Qn(.) is tangent to the 45◦ line. This is a knife-edge (non-generic) situation where the
stable (high output) equilibrium coincides with the unstable (low output) equilibrium, and with
the critical mass. In this case, as one firm alone would simply be unable to achieve industry
take-off, an incumbent monopolist would welcome one extra firm into the market as a matter of
survival. Due to the knife-edge equilibrium, a monopolist might even opt for encouraging two
other firms to enter, even though its profit can be seen to be lower with two competitors than with
just one.23 For any number of firms beyond three, the equilibrium set includes three points; the
two extremal ones are stable and the intermediate one is unstable. This is the first example with
closed-form solutions of the three-equilibrium constellation that is often portrayed as typical of
many network industries.

It is easily verified that at the largest equilibrium per-firm profit decreases as n increases
beyond 2 firms. So, of all possible market structures, the lowest per-firm profit is achieved by
monopoly (zero profit) and the highest by duopoly, an outcome with no counterpart in ordinary
markets. In addition, due to the non-emergence of the industry, monopoly is clearly the worse
scenario out of all possible market structures for firms, consumers and thus society as well, but
not because of the usual deadweight loss, but something far worse for all: The non-emergence of
the industry!

This example is also instructive as to the co-opetitive nature of the FECE concept. Indeed,
the cooperative aspect dominates the competitive aspect (in the strong sense of survival) when
less than two firms are present in the market. With more than two firms, a higher number of firms
carries the advantage of higher prospects for industry take-off (due to a lower critical mass), but it
reduces per-firm profit. Thus, in the latter case, we uncover here another novel feature in network
markets: That per firm profit alone is an insufficient indicator of firms “well-being”, since it does
not take into account the possibility of failure in take-off. Rather, a two-dimensional index is
needed for firms to be able to unambiguously rank different prospects.

23 Indeed, in a richer model (possibly including uncertainty), depending on the size of the critical mass and on their
risk attitude, the firms might welcome entry beyond the threshold number n̂ that allows the industry to exit the nonviable
state. This would shrink the critical mass, and thus would increase the probability of reaching the high steady state if the
initial expectations level S0 is viewed as a random variable.
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Clearly, Qn(.) shifts up as n increases. As n increases beyond duopoly, viability increases
since the basin of attraction of the zero equilibrium contracts, but uniformly viability is never
attained as P1(0,0) + P2(0,0) = 0, in conformity with Remark 2 above.

Finally, this example may also be invoked to illustrate the use of Theorem 4 in proving exis-
tence of a non-trivial equilibrium. The main condition in Theorem 4(iii) is easily shown to boil
down to

n exp(1 − 1/S) � 2S for some S,

which cannot hold for n = 1 (as is easily checked) but always holds for n � 2. Hence, in light
of the above closed-form computations, we can conclude that, for this example, the condition in
Theorem 4(iii) turns out to be a necessary and sufficient condition for the existence of a non-
trivial equilibrium.

5. Number of firms and market performance

This section studies the effects of market structure (or exogenous entry) on the equilibrium
industry output, market price, per-firm output and profits, consumer surplus and social welfare.
Amir and Lambson [4] and Amir [3] address similar questions for standard Cournot competition,
and show that scale economies lead to counterintuitive results. This section shows that, under
network effects, similar (and additional) reversals are typically much easier to come by, and that
they can be generated solely by demand-side externalities instead of production scale economies.
We provide sufficient conditions (or at least closed-form examples) for these counterintuitive
outcomes.

The analysis that follows refers specifically to the largest FECE, with outputs denoted by Zn

and xn, throughout. All the results in this section also apply to the smallest equilibrium, although
these are trivial conclusions whenever the zero outcome is that equilibrium.

The new assumptions we invoke below depend on the signs of the functions (with domain
[0, nK])

�3(Z) = P1(Z,Z) + P2(Z,Z) and

�4(Z) = [
P(Z,Z) − C′(Z/n)

][
P11(Z,Z) + P12(Z,Z)

]
− P1(Z,Z)

[
P1(Z,Z) + P2(Z,Z)

]
.

�3(Z) evaluates the total effect on market price of changing aggregate output along the
fulfilled expectation path. We will provide some insight on �4(Z) later. In what follows, let
In = [Zn,Zn+1].

The first result relates entry to equilibrium industry output and market price.

Theorem 8. At the extremal equilibria

(i) aggregate output satisfies Zn+1 � Zn; and
(ii) Pn+1 � Pn if �3(.) � 0 on In, and Pn+1 � Pn if �3(.) � 0 on In.

That industry output increases with n is also true in standard Cournot competition (Amir and
Lambson [4, Theorem 2.2(b)]). In the latter case this implies that market price decreases after
new entry. As captured by Theorem 8(ii), the effect of entry on market price is ambiguous when
network effects prevail. The reason is that when industry output increases firms must set the price
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low enough to attract the marginal consumer, but when more buyers join the network, consumers’
willingness to pay increases. Thus the overall effect of entry on price depends on how strong the
output effect is relative to the network effect. As a consequence, the so-called property of quasi-
competitiveness need not be hold here, in contrast to the standard Cournot game.

The next result deals with the effects of entry on per-firm outputs, and is important in terms
of its implications on the performance of the industry (on profits and welfare). In what follows,
interior equilibrium means Zn,Zn+1 < nK .

Lemma 9. At an interior equilibrium, per-firm outputs are such that

(i) xn+1 � xn if �4(.) � 0 on In; and
(ii) xn+1 � xn if �4(.) � 0 on In.

In short, this result means that the scope for the business-stealing effect, which is nearly
universal in standard Cournot oligopoly, is quite a bit narrower in the presence of network ex-
ternalities. On the other hand, the scope for the opposite, or business-enhancing, effect is much
broader here.

To shed light on this comment (and the meaning of �4(.)), assume no cost of production for
simplicity, so that �4(.) � 0 reduces to[

P(Z,Z)P12(Z,Z) − P1(Z,Z)P2(Z,Z)
] + [

P(Z,Z)P11(Z,Z) − P 2
1 (Z,Z)

]
� 0. (7)

The first term is positive by (A5), and log-convexity of P(Z,S) in Z would make the second one
positive as well. Thus, log-convexity is a sufficient (but not necessary) condition for the extremal
selections of per-firm equilibrium output to increase after new entry whenever marginal costs are
zero. Amir and Lambson [4, Theorem 2.3] requires log-convexity to guarantee the same result
for standard Cournot competition. Thus, network effects facilitate this unusual outcome.

Based on Theorem 8 and Lemma 9, the following result deals with the effects of entry on
per-firm equilibrium profits. Recall that in standard Cournot oligopoly, the only part of the con-
ventional wisdom about the effects of competition that is universally valid is that per-firm profits
decline with the number of competitors (Amir and Lambson [4] and Amir [3]). We now show
that in the presence of network effects, this result can be easily reversed.

Theorem 10. At an interior equilibrium, per-firm profits are such that

(i) πn+1 � πn if �3(.) � 0 and �4(.) � 0 on In; and
(ii) πn+1 � πn if �3(.) � 0 and �4(.) � 0 on In.

The first result provides sufficient conditions for the firms in the market to prefer entry by
new firms. It generalizes a result in Economides [13], based on a more specific formulation (also
see Katz and Shapiro [19]). While at first surprising, this result has a simple intuition. As seen
above, with strong network effects, the output increase in response to entry also shifts the inverse
demand function up, thus pushing for a price increase. If the overall effect on the market price is
positive and each firm increases own output, then the incumbent firms in the market are better-off
with entry. So, again, strong network effects can overturn the usual competitive effect of entry.

A natural question arises when profits increase in n. Why can’t the existing firms attempt to
act as if there were more of them in order to each get higher profits at equilibrium? Since they
would do so by producing a higher output level in an effort to influence consumers’ expectations
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of the network size upwards, the answer is the same as for the start-up problem: The tacit lack of
commitment power on the part of the firms, which is at the heart of the FECE concept.

These departures from standard Cournot competition reinforce the perception suggested by
the viability results that FECE is a co-opetitive, rather than a purely noncooperative, equilibrium
concept (Brandenburg and Nalebuff [8]). Firms work together to build a common network base,
and then compete with each other in serving it. Thus more firms can be helpful or detrimental to
a firm, depending on the relative strengths of the network and the business-stealing effects.

Under conditions often imposed in the related literature, no second order effects on P , or
P11(Z,Z) + P12(Z,Z) = 0, �3(.) � 0 (�3(.) � 0) suffices for per-firm output and profits to
increase (decrease) with entry.24

This result identifies industry characteristics that make firms benefit from further entry by
competitors. Both conditions in Theorem 10(i) can be interpreted in large part as saying that
network effects must be strong enough. Recall that (7) is more likely to hold when (A5) holds
with sufficient slack, which means that price elasticity increases fast enough in the network size.

The next example highlights the implications of Theorem 10.

Example 2. Consider a Cournot oligopoly with no production costs and

P(Z,S) = max
{
a + bSα − Z,0

}
with a � 0, b > 0 and α ∈ (0,1).

The reaction function of any given firm is x(y,S) = max{(a + bSα − y)/2,0}. (Here we assume
K is large enough.) From the first order condition, the symmetric equilibrium industry output is
implicitly defined by −Zn(1 + n) + na + nbZα

n = 0.
Setting a = 10, b = 5 and α = 4/5, per-firm equilibrium profits for different values of n are

π1 ≈ 14,561 < π2 ≈ 49,255 < π3 ≈ 67,316 < π4 ≈ 70,676

π5 ≈ 67,288 > π6 ≈ 61,520 > π7 ≈ 55,301 > π8 ≈ 49,404 > · · · > π21 ≈ 14,444.

When the number of firms is small, n = 1,2, or 3, incumbent firms will be better off if an
extra firm enters the market. In particular, a monopolist would prefer to have a few competitors.
However, when n � 4, firms would be worse-off upon further entry.

Consider a hypothetical situation where per-firm entry costs are 14,443. Then a single firm
in the market would barely make a positive profit, and potential entrants might decide to stay
out if they based their assessment on standard oligopoly settings (due to profits just covering
entry costs). Yet, the market could actually accommodate a full 21 firms at the unique free entry
equilibrium!

The last result describes the effects of entry on consumer surplus and social welfare (here,
A(.) denotes average cost, defined as usual by A(x) = C(x)/x and A(0) = C ′(0)).

Theorem 11. At the highest equilibrium output

(i) CSn+1 � CSn if �3(.) � 0 on In or P12(Z,S) � 0 for all Z,S; and
(ii) Wn+1 � Wn if P(Z,Zn+1) − P(Z,Zn) � A(xn+1) − A(xn) for all Z, or xn+1 � xn.

24 P11(Z,Z) + P12(Z,Z) = 0 is satisfied if, for example, P(Z,S) = h(S) − kZ with h(.) an increasing function (as in
Example 2), or P(Z,S) = f (S − Z) with f (.) increasing.
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In thinking about social and consumer welfare throughout, it is useful to keep in mind that
since P2(Z,S) > 0 and Zn+1 � Zn by Theorem 8(i), the inverse demand shifts up as the number
of firms increases, i.e., P(.,Zn+1) � P(.,Zn). Hence, the area under the inverse demand changes
through two effects: The shift in the demand curve and the change in the equilibrium output.

As a consequence of the so-called property of quasi-competitiveness (price falls with the
number of firms), which under similar conditions holds in the standard Cournot game, the first
condition in Theorem 11(i) is always satisfied in the absence of network effects. The condition
P12 � 0, which is consistent with (A5), is always satisfied in the widely used cases of additively
and multiplicatively separable inverse demand, so consumer surplus is well-behaved in much of
the extant literature. In contrast, Example 3 (below) shows that consumer surplus can decrease
with entry in network industries, even in a global sense. Katz and Shapiro [19] explain why this
unusual effect might occur here: If the network externality is strong for the marginal consumer,
then the increment in sales generated by the larger number of firms in the market, will increase
willingness to pay for the product above that of the average consumer. As a consequence, the
firms will be able to raise the market price by more than the increase in the average consumer’s
willingness to pay for the product and consumer surplus will fall.

The left-hand side of the first condition in Theorem 11(ii) is always positive. So Theo-
rem 11(ii) identifies two sufficient conditions for welfare to increase: Either one has decreasing
or constant returns to scale (A(.) is increasing) and decreasing per-firm output, or one has per-
firm output increasing in n. Network effects play a key role in inducing these two conditions.
First, they facilitate the demand shift and the increase in total output, which makes the first con-
dition more likely to hold. As seen earlier, they also weaken the business-stealing effect, thereby
easing the conditions under which per-firm output increases in n. Therefore, the effects of entry
on welfare conform quite closely to standard intuition, and it would take a combination of strong
economies of scale and weak network effects to reverse this result.

To recapitulate, while the scope for per-firm profits and consumer surplus to respond in a
counter-intuitive way to entry is non-existent in standard Cournot (under the present assump-
tions), it is fairly broad under network effects. On the other hand, the usual result on social
welfare is much harder to reverse for network industries.

Example 3 shows an interesting case in which both social welfare and industry profits increase
with entry, but consumer surplus decreases, with all these effects holding globally.

Example 3. Consider an industry with inverse demand function P(Z,S) = max{a − Z/S3,0}
with a,K > 1, and zero costs. The reaction function of a firm is then

x(y,S) =
{

max{(aS3 − y)/2,0} if (aS3 − y)/2 < K,

K if (aS3 − y)/2 � K.

Upon calculation, we find three FECE, with industry outputs: Zn = {0,
√

(n + 1)/(na),nK}. We
restrict consideration below to the highest equilibrium, Zn = nK .

From a simple computation, consumer surplus is CSn = 1/(2nK), assuming a � 1/(nK)2.
Hence consumer surplus globally decreases in n. This result is possible as the two sufficient
conditions in Theorem 11(i) are violated, i.e., industry price Pn = a − 1/n2K2 increases in n

and P12(Z,S) = 3/S4 > 0. Note that price globally increases here as network effects clearly
dominate the effect of the law of demand, i.e., P1(Z,Z) + P2(Z,Z) = 2/Z3 > 0.

Per-firm profit is πn = K[a − 1/(nK)2], which globally increases in n! Despite consumer
surplus and profit behaving in counter-intuitive fashion, corresponding social welfare Wn =
anK − 1/(2nK) globally increases in n, in line with intuition and Theorem 11(ii).
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Hence, an unusual outcome prevails here, which is a full reversal with respect to conventional
wisdom from non-network markets. The most preferred market structure is monopoly from the
consumers’ standpoint, and each firm would prefer to have as many rivals as possible in the
industry! In addition, the interest of society is fully aligned with that of the firms, not consumers.

6. Concluding remarks

This paper has provided a thorough theoretical analysis of a static model of oligopolistic com-
petition with non-additive network effects. A minimal complementarity structure on the model
leads to industry output increasing in the rivals’ output that a firm faces and in the expected net-
work size, thus yielding in one broad stroke existence of symmetric equilibrium as well as some
key characterization results with a comparative statics flavor. The so-called start up problem is
extensively investigated, in terms of basic properties of the market primitives, and the strength
of network effects. In particular, industry viability, a key concept in network markets for which
we provide novel theoretical foundations, is shown to be enhanced by higher numbers of com-
petitors in the market as well as by technological progress. The central feature here is a simple
learning/adjustment dynamics that also serves as a theoretical foundation for the solution con-
cept of fulfilled expectations Cournot equilibrium. We elaborate in some detail on the natural
tendency for multiple equilibria, path dependence, and the importance of initial market expec-
tations, features that emerge due to the presence of demand-side increasing returns driven by
non-additive network effects.

As to the effects of market structure, sufficient conditions are derived for each dimension of
market performance to increase or decrease with more competition. The tendency for counter-
intuitive effects, which is extensively characterized, is much stronger than in ordinary markets.
Most notably, price and per-firm profits can both increase with the number of firms, with the
latter effect having no counterpart in ordinary markets even under scale economies (Amir and
Lambson [4]). Along with the need, often critical, for firms to join hands to successfully launch
new network products, these results underscore the co-opetitive nature of the FECE concept:
Firms are partners in setting expectations and building consumer base, but (business-stealing)
competitors in serving that base.

Several instructive examples with closed-form solutions are constructed, one of which reflects
exactly the prototypical three-equilibrium configuration that is broadly thought to capture the
essence of the viability issue through expectation dynamics in telecommunications industries.

In terms of policy implications, by identifying precise and tight conditions for the various pos-
sible effects to hold, our results provide solid theoretical foundations for some well-known policy
prescriptions that need revisiting for network markets (Shapiro [30]). The main departure from
ordinary markets is the emergence of a start up problem, with potentially serious consequences
for both firms and society. A successful launch of a new product with a small stand-alone value
depends on various factors, including the usual ones, such as intrinsic quality, production costs,
reputational aspects, and government participation. In addition, as the case studies reported in
the business strategy literature confirm, interconnection amongst competitors or agreement on
compatibility is quite often a critical determinant of success (Shapiro and Varian [31] and Rohlfs
[29]). The results on viability provide a solid theoretical grounding to lend insight to the lessons
on the start up problem gleaned from these case studies, in ways that apply to both successes and
failures. One implication for product development is that, as a way out of the start up trap, firms
ought to bundle multiple functions in network products, in order to ensure a sufficient stand-alone
value.
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Our results on market performance also largely confirm Rohlfs [29] clear-cut conclusion that
interconnection is most often a win-win proposition for both firms and society.25 When the
effects of more competition can lead to multiple reversals of conventional intuition, the usual
trade-offs between consumer surplus and producer surplus are no longer the norm, and many pil-
lars of conventional wisdom about suitable public policy for such industries need re-examining.
The presence of network effects might have unusual implications on firms’ attitudes towards in-
tellectual property rights and entry deterrence. Firms in possession of patents will have a much
higher than usual incentive to engage in licensing to their rivals on rather generous terms (Shep-
ard [32], Shapiro [30]). Pooling of patents held by different firms is also to be expected. In
terms of antitrust implications, various forms of pro-competitive cooperation amongst direct ri-
vals should be allowed or even encouraged. This is particularly true concerning the often difficult
and costly process of establishing a common standard needed for a new network industry to suc-
ceed.

In terms of public policy, government participation in network industry start ups can be crucial
due to the major role it can play in terms of influencing market expectations (the S0 variable)
upwards. In addition, the interconnection process can raise such thorny and complex issues for
the private actors that a positive coordinating role for government agencies often arises. Even
initial subsidies might play a very constructive role. In one of his most instructive case studies,
Rohlfs [29] reports that the unprecedented success of the ultimate network industry – the Internet
– is largely due to the direct role played by the U.S. government via its DoD and NSF temporary
subsidy programs, in terms of ensuring global interconnection.26 Rohlfs’ detailed account of this
glorious episode of government intervention suggests that, without it, interconnection for the
Internet – something usually taken for granted – could easily have failed or been substantially
delayed.

The present analysis paves the way for further promising research in a number of interesting
directions, including (i) the role of marketing in the start up problem, (ii) the scope for division-
alization in network industries in terms of both start up and profit incentives of firms, and (iii)
the comparison with the case where firms possess commitment power in setting output levels.

7. Proofs

This section provides the proofs for all the results of the paper, and also contains the statements
and proofs of some useful intermediate results not given in the body of the paper.

The proof of Lemma 1 calls for an intermediate result.

Lemma 12. π̃(Z, y,S) has the strict single-crossing property in (Z;S).

Proof of Lemma 12. First note that �2(Z,y,S) > 0 if and only if ∂2 logP(Z,S)/∂Z∂S > 0.
We show that this condition implies that π̃(Z, y,S) has the strict single-crossing property in
(Z;S), i.e., that for any Z > Z′ and S > S′,

π̃
(
Z,y,S′) � π̃

(
Z′, y, S′) �⇒ π̃ (Z, y,S) > π̃

(
Z′, y, S

)
. (8)

25 The one exception to this recommendation that he points out arises in industries wherein one firm has a substantial
first-mover advantage, typically achieved by being substantially ahead of rivals in offering a new product.
26 Interestingly, this real life regulation scenario fits the two-stage game with a market maker proposed in Section 2 as
a purely game-theoretic foundation for FECE.
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Since ∂2 logP(Z,S)/∂Z∂S > 0, logP(Z,S) − logP(Z′, S) > logP(Z,S′) − logP(Z′, S′), or

P(Z,S)/P
(
Z′, S

)
> P

(
Z,S′)/P (

Z′, S′). (9)

The left-hand side of (8) can be rewritten as

(Z − y)P
(
Z,S′) − C(Z − y) �

(
Z′ − y

)
P

(
Z′, S′) − C

(
Z′ − y

)
. (10)

Combining (9) and (10), we get

(Z − y)P (Z,S)P
(
Z′, S′)/P (

Z′, S
) − C(Z − y)

>
(
Z′ − y

)
P

(
Z′, S′) − C

(
Z′ − y

)
. (11)

Multiplying both sides of (11) by P(Z′, S)/P (Z′, S′) we obtain

(Z − y)P (Z,S) − P(Z′, S)

P (Z′, S′)
C(Z − y)

>
(
Z′ − y

)
P

(
Z′, S

) − P(Z′, S)

P (Z′, S′)
C

(
Z′ − y

)
. (12)

By (A1), P(Z′, S)/P (Z′, S′) > 1 and, by (A2), C(Z − y) � C(Z′ − y). Thus, (12) implies

(Z − y)P (Z,S) − C(Z − y) >
(
Z′ − y

)
P

(
Z′, S

) − C
(
Z′ − y

)
, (13)

which is just the right-hand side of (8). Hence, (8) holds. �
Proof of Lemma 1. Since ∂2π̃ (Z, y,S)/∂Z∂y = �1(Z,y,S) > 0, by (A4), the maximand
in (2) has strictly increasing differences in (Z,y). Furthermore, the feasible correspondence
[y, y + K] is ascending in y.27 Then, by Topkis’s Theorem (Topkis [36]), every selection from
the argmax of π̃ (Z, y,S), Z(y,S), increases in y.

By Lemma 12, π̃ (Z, y,S) has the strict single-crossing property in (Z;S). In addition, the
feasible correspondence [y, y + K] does not depend on S. Then, by Milgrom and Shannon [25],
every selection from the argmax of π̃ (Z, y,S), Z(y,S), is also increasing in S. �
Proof of Theorem 2. The proof proceeds in two steps. First, for each fixed S, consider the
correspondence BS , a normalized cumulative best-response (Amir and Lambson [4])

BS : [0, (n − 1)K
] → [

0, (n − 1)K
]
,

y → n − 1

n
Z′

where Z′ = x′ + y denotes a best-response output level by a firm to a joint output y by the other
(n − 1) firms, given S. It is readily verified that the (set-valued) range of BS is as given, i.e.,
if Z′ ∈ [y, y + K] and y ∈ [0, (n − 1)K], then [(n − 1)/n]Z′ ∈ [0, (n − 1)K], and that a fixed
point of BS is a symmetric Cournot equilibrium, and vice versa. By Lemma 1, every selection of
BS(y) increases in y. By Tarski’s fixed point theorem (Tarski [35]), BS has a fixed point.

From Amir and Lambson [4, Theorem 2.1], we know that no asymmetric equilibria exists.
The second step is to show that Qn(S), the set of Cournot equilibrium industry outputs when

inverse demand is P(., S), has fixed points. To this end, by Topkis’s Theorem and (A5), every se-
lection from the argmax of π̃(Z, y,S), Z(y,S) or [n/(n−1)]BS(y), is increasing in S. Hence, by

27 Notice that with capacity constraints Z(y,S) = arg max{π̃(Z, y,S): y + K � Z � y}.
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Milgrom and Roberts [24, Theorem 6], the extremal fixed points of BS(y), i.e., yn(S) and yn(S),

are increasing in S. Since Qn(S) = [n/(n − 1)]BS[yn(S)] and Qn(S) = [n/(n − 1)]BS[yn(S)],
the extremal selections of the correspondence Qn : [0, nK] → [0, nK] are both increasing in S.
Then, by Tarski’s fixed point theorem, Qn, say, has a fixed point, which is easily seen to be a
FECE. �
Proof of Lemma 3. By definition, an industry output of 0 is a FECE if 0 ∈ x(0,0). This holds
if and only if π(0,0,0) � π(x,0,0) ∀x ∈ [0,K], i.e., 0 � xP (x,0) − C(x), ∀x ∈ [0,K]. �

The proof of Theorem 4 calls for several intermediate results. We first state a nonsmooth
version of the Implicit Function Theorem for increasing selections of Qn(.). We then show that
when 0 is part of the equilibrium set, Qn(S) is single-valued and right-differentiable at S = 0.

Lemma 13. Let Q̃n be an increasing selection of Qn(S). Then Q̃n(S) is differentiable for almost
all S, and, if Q̃n(S) ∈ (0, nK) for S > 0, its slope is given by (here, Q̃n stands for Q̃n(S))

∂Q̃n(S)

∂S
= − nP2(Q̃n, S) + Q̃nP12(Q̃n, S)

(n + 1)P1(Q̃n, S) + Q̃nP11(Q̃n, S) − C′′(Q̃n/n)
. (14)

Proof of Lemma 13. If Q̃n(S) is interior, it satisfies the first order condition (upon multiplying
by n and writing Q̃n for Q̃n(S))

nP (Q̃n, S) + Q̃nP1(Q̃n, S) − nC′(Q̃n/n) = 0. (15)

Since Q̃n(S) is increasing, it is differentiable almost everywhere (w.r.t. Lebesgue measure).
Hence, differentiating both sides of (15) with respect to S on a subset of full Lebesgue measure
and collecting terms, we get that for almost all S, (14) holds (since the derivatives on the right-
hand side of (14) all exist from our smoothness assumptions). �
Proof of Lemma 5. We first show that if 0 ∈ Qn(0), then 0 = Qn(0), i.e., Qn(0) is a singleton.
By Lemma 3 we know that 0 ∈ Qn(0) if and only if

xP (x,0) � C(x) for all x ∈ [0,K]. (16)

By (A1), (16) implies that xP (x + y,0) < C(x) for all x, y > 0. In other words, 0 is a (strictly)
dominant strategy in the standard Cournot game with S = 0. Hence Qn(0) is single-valued and
Qn(0) = 0.

It is convenient to divide the rest of the proof into two separate cases.
Case 1. P(0,0) = C′(0). Then the trivial outcome is an interior equilibrium. To show (5), take

any sequence Sk ↓ 0 such that Q̃n is differentiable at Sk for all k (this is possible since the set of
points of differentiability of an increasing function is a set of full Lebesgue measure, and thus a
dense subset of the domain). In addition, since Q̃n is increasing, it admits left and right limits at
every point, so limk→∞ Q̃n(Sk) exists. Treating S as a parameter and invoking the upper hemi-
continuity (u.h.c.) of the equilibrium correspondence for the Cournot game (see, e.g., Fudenberg
and Tirole [16]), we conclude that Qn(.) is u.h.c.. Hence, limk→∞ Q̃n(Sk) ∈ Qn(0) = {0}, so
that by the earlier part of this proof, limk→∞ Q̃n(Sk) = 0.

Now consider (14) with S = Sk . By assumption (A1) and the fact that limk→∞ Q̃n(Sk) = 0,
the right-hand side of (14) is right-continuous in S at 0. Taking limits as k → ∞, it follows that
limk→∞ ∂Q̃n(Sk)/∂S exists and is equal to the right-hand side of (5). Since this argument is
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clearly independent of the sequence (Sk) chosen (out of the subset of full Lebesgue measure of
the domain [0, nK]), we conclude that ∂Q̃n(S)/∂S|S=0 exists, is continuous at 0, and is given
by (5).

Next observe that this entire argument for Q̃n(.) is also valid for the two selections
Qn(.) and Qn(.), since these are both increasing. Hence, ∂Qn(S)/∂S|S=0 = ∂Qn(S)/∂S|S=0,
with both being equal to the right-hand side of (5). A moment of thought will reveal that
max{∂Qn(S)/∂S|S=0} = ∂Qn(S)/∂S|S=0 and min{∂Qn(S)/∂S|S=0} = ∂Qn(S)/∂S|S=0. Hence
max{∂Qn(S)/∂S|S=0} = min{∂Qn(S)/∂S|S=0}. It follows that, for the entire correspondence
Qn(.), ∂Qn(S)/∂S|S=0 exists (in the sense of being single-valued), is continuous and given by
the right-hand side of (5).

Case 2. P(0,0) < C′(0). Then the trivial equilibrium is not interior. By (A1), P(0, S) < C ′(0)

for S sufficiently small, so Qn(S) = 0 for all such S. It follows that Q′
n(S) = 0 for S small

enough. �
We next show that any argmax of the fictitious objective Π(Z,S) is an element of Qn(S).

Lemma 14. Assume (A1)–(A5) are satisfied and C(.) is convex. Given any n ∈ N and S ∈
[0, nK], if Z∗ ∈ arg max{Π(Z,S): 0 � Z � nK} then Z∗ ∈ Qn(S).

Proof of Lemma 14. We show that if Z∗ is an argmax of Π(Z,S), then Z∗ is the industry output
of a symmetric Cournot equilibrium with exogenous S. Let Z∗ = x∗ + y∗, with x∗ = Z∗/n and
y∗ = (n − 1)x∗, and consider Z′ = x′ + y∗, with x′ ∈ [0,K]. Then x′ denotes a firm’s possible
deviation from its equilibrium output x∗. We show this unilateral deviation is never profitable.

Since Z∗ is a maximizer of Π(Z,S), then Π(Z∗, S) � Π(Z′, S), which is equivalent to say

n − 1

n

x∗+y∗∫
0

P(t, S)dt + x∗P
(
x∗ + y∗, S

) − nC
(
x∗)

� (n − 1)

n

x′+y∗∫
0

P(t, S) dt + (x′ + y∗)
n

P
(
x′ + y∗, S

) − nC

(
x′ + y∗

n

)
. (17)

Then we have

x∗P
(
x∗ + y∗, S

) − C
(
x∗)

� n − 1

n

x′+y∗∫
0

P(t, S) dt + (x′ + y∗)
n

P
(
x′ + y∗, S

) − nC

(
x′ + y∗

n

)

− n − 1

n

x∗+y∗∫
0

P(t, S) dt + (n − 1)C
(
x∗)

� n − 1

n

x′+y∗∫
∗ ∗

P(t, S) dt + (x′ + y∗)
n

P
(
x′ + y∗, S

) − C
(
x′)
x +y
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� (n − 1)(x′ − x∗)
n

P
(
x′ + y∗, S

) + (x′ + y∗)
n

P
(
x′ + y∗, S

) − C
(
x′)

= x′P
(
x′ + y∗, S

) − C
(
x′).

The first inequality follows from (17), after rearranging terms. The second one holds as we
assumed C(.) is convex (and y∗ = (n − 1)x∗), and the last one by (A1), P1(Z,S) < 0. Since x′
is arbitrary, this argument shows that x∗ is a symmetric Cournot equilibrium. �
Proof of Theorem 4. Part (i) holds because if the trivial outcome (zero output) is not part of
the equilibrium set, then Theorem 2 guarantees there is a FECE with strictly positive industry
output.

The proofs of Parts (ii) and (iii) both depend on the following argument. By the proof of Theo-
rem 2, the maximal and minimal selections of Qn(S), Qn(S) and Qn(S), increase in S. Assume,

for the moment, there exists an S′ ∈ (0, nK] such that Qn(S
′) � S′. If we restrict attention to

the values of S in [S′, nK], it follows that Qn(S) ∈ [S′, nK] because Qn(.) is increasing and
Qn(S

′) � S′. Therefore, for all S ∈ [S′, nK], Qn(S) is an increasing function that maps [S′, nK]
into itself. Hence, by Tarski’s fixed point theorem (Tarski [35]), there is an S′ � S′′ � nK such
that Qn(S

′′) = S′′. Since this condition implies Qn(S
′′) is a strictly positive FECE, the exis-

tence of a non-trivial equilibrium reduces to showing there is at least one S ∈ (0, nK] for which
Qn(S) � S.

To prove part (ii), we show Q′
n(0) > 1. By Lemma 5, Q′

n(0) > 1 if

P1(0,0) + P2(0,0) >
[−P1(0,0) + C′′(0)

]
/n.

Then the existence of a non-trivial FECE follows by the argument in the previous paragraph, as
Lemma 5 and the property Q′

n(0) > 1, imply there exists a small ε > 0 for which Qn(ε) > ε.
This completes the proof of part (ii).

The condition in part (iii) guarantees there is some S ∈ (0, nK] and some Z′ � S for which
Π(Z′, S) � Π(Z,S) for all Z � S. As a consequence, the largest argmax of Π(Z,S) must be
larger than S. Call this argmax Z′′. Our proof follows because Z′′ ∈ Qn(S), by Lemma 14, and
this ensures there is an S ∈ (0, nK] for which an element of Qn(S) is higher than S. �
Proof of Theorem 7. We will prove the result for a change in n, using the selection Qn(S), or
any other increasing selection. The proof for α, being almost identical, is omitted.

(i) The fact that Qn(.) shifts up as n increases follows from Amir and Lambson [4, Theorem
2.2(b)], which shows that the largest Cournot equilibrium output increases in n. The proof here
consists of applying this result at every exogenously given S.

(ii) Let n′ > n, and CM ′ and CM denote the critical masses corresponding to Qn′(S)

and Qn(S), respectively. Pick any S0 > CM . By definition of CM , we know that the orbit
Sk = Qn(Sk−1) starting from the given S0 is a bounded monotonic sequence. Hence, by the
Monotone Convergence Theorem, there is some S∞ > 0 such that {Sk} ↑ S∞, with S∞ being a
FECE industry output of the n-firm problem. From the same S0 > CM , the orbit S′

k = Qn′(S′
k−1)

is also bounded and monotonic, so there is some S′∞ such that {S′
k} ↑ S′∞, with S′∞ being a FECE

industry output of the n′-firm problem. Since Qn′(.) � Qn(.), we have S′∞ � S∞ > 0. To reca-
pitulate, we have shown that

for any S0 > CM, we have
{
S′

k

} ↑ S′∞ > 0. (18)

Since CM ′ is by definition the smallest initial expectation satisfying (18), it follows that CM ′ �
CM . �
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Proof of Theorem 8. The mapping BS(.), defined in the proof of Theorem 2, increases in n.
Hence, by Milgrom and Roberts [24, Theorem 6], the extremal fixed points of BS(y), i.e., yn(S)

and yn(S), are increasing in n, for each given S.
By Lemma 12, every selection from the argmax of π̃(Z, y,S), Z(y,S) or [n/(n − 1)]BS(y),

increases in y. Then the extremal selections of the correspondence Qn : [0, nK] → [0, nK],
Qn(S) = [n/(n − 1)]BS[yn(S)] and Qn(S) = [n/(n − 1)]BS[yn(S)], are both increasing in n.

Hence, again by Milgrom and Roberts [24, Theorem 6], the extremal fixed points of Qn, Zn and
Zn, increase in n. This shows part (i).

Part (ii) follows directly from the previous claim since dP (Z,Z)/dZ = �3(Z). �
Proof of Lemma 9. At any interior equilibrium xn must satisfy the first order condition

P(Zn,Zn) + xnP1(Zn,Zn) − C′(xn) = 0. (19)

Differentiating (19) with respect to n and rearranging terms we get

dxn

dn
= {P1(Zn,Zn) + P2(Zn,Zn) + xn[P11(Zn,Zn) + P12(Zn,Zn)]}

−P1(Zn,Zn) + C′′(xn)

dZn

dn
. (20)

Substituting in (20) xn by [C′(Zn/n) − P(Zn,Zn)]/P1(Zn,Zn), and rearranging terms, we get

dxn

dn
= −1

P1(Zn,Zn)

�4(Zn)

−P1(Zn,Zn) + C′′(xn)

dZn

dn
. (21)

It follows from (A1), (A4) and Theorem 8(i) that dxn/dn has the same sign as �4(Z) on In. �
Proof of Theorem 10. Consider the following inequalities

πn+1 = xn+1P(xn+1 + yn+1,Zn+1) − C(xn+1)

� xnP (xn + yn+1,Zn+1) − C(xn)

� xnP (xn+1 + yn+1,Zn+1) − C(xn)

� xnP (xn + yn,Zn) − C(xn) = πn.

The first inequality follows by the Cournot equilibrium property. The second one is from
xn+1 � xn (see Lemma 9) and (A1). The third inequality holds as our assumptions imply
P(Zn+1,Zn+1) � P(Zn,Zn). Therefore, πn+1 � πn. This shows part (i). We omit the proof
of part (ii) as it is almost identical to the last one. �
Proof of Theorem 11. The first claim in part (i) follows directly from Theorem 8.

The following steps prove the sufficiency of the second condition

CSn+1 − CSn =
Zn+1∫
0

[
P(t,Zn+1) − P(Zn+1,Zn+1)

]
dt −

Zn∫
0

[
P(t,Zn) − P(Zn,Zn)

]
dt

�
Zn∫
0

[
P(t,Zn+1) − P(Zn+1,Zn+1)

]
dt −

Zn∫
0

[
P(t,Zn) − P(Zn,Zn)

]
dt

= Zn

[
P(Zn,Zn) − P(Zn+1,Zn)

]
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−
Zn∫
0

{[
P(Zn+1,Zn+1) − P(Zn+1,Zn)

] − [
P(t,Zn+1) − P(t,Zn)

]}
dt

� Zn

[
P(Zn,Zn) − P(Zn+1,Zn)

]
� 0.

The first inequality follows directly from P1(Z,S) < 0 and Theorem 8(i). The next step is ob-

tained from the previous one by adding and subtracting
∫ Zn

0 P(Zn+1,Zn) dt , and rearranging
terms. To justify the second inequality notice that P12(Z,S) � 0 is sufficient for

Zn∫
0

[
P(t,Zn+1) − P(t,Zn)

]
dt �

Zn∫
0

[
P(Zn+1,Zn+1) − P(Zn+1,Zn)

]
dt.

Our last step is true since P1(Z,S) < 0.
Hence, P12(Z,S) � 0 ∀Z,S ∈ [0, nK] is sufficient for CSn+1 − CSn � 0, or CSn+1 � CSn.
To prove the first claim of part (ii) consider

Wn+1 − Wn =
Zn+1∫
0

P(t,Zn+1) dt − Zn+1A(xn+1) −
[ Zn∫

0

P(t,Zn) dt − ZnA(xn)

]

�
Zn∫
0

P(t,Zn+1) dt − ZnA(xn+1) −
[ Zn∫

0

P(t,Zn) dt − ZnA(xn)

]
� 0.

The first inequality follows because P(t,Zn+1)−A(xn+1) � 0 for all t � Zn+1, and Zn+1 � Zn

by Theorem 8(i). The second inequality holds by the assumed conditions.
To show the sufficiency of the second condition let us define Vn(x,S) = ∫ nx

0 P(t, S) dt −
nC(x). Notice Vn(x,S) is concave in x since n[nP1(nx,S)−C′′(x)] < 0 by both (A1) and (A4).
In addition,

Zn+1∫
0

P(t,Zn+1) dt =
nxn+1∫
0

P(t,Zn+1) dt +
Zn+1∫

nxn+1

P(t,Zn+1) dt

�
nxn+1∫
0

P(t,Zn+1) dt + xn+1P(Zn+1,Zn+1) (22)

where the inequality follows by (A1). Next, consider the following steps

Wn+1 − Wn =
(n+1)xn+1∫

0

P(t,Zn+1) dt − (n + 1)C(xn+1) −
[ nxn∫

0

P(t,Zn) dt − nC(xn)

]

� πn+1 +
nxn+1∫
0

P(t,Zn+1) dt − nC(xn+1) −
[ nxn∫

0

P(t,Zn+1) dt − nC(xn)

]

= πn+1 + Vn(xn+1,Zn+1) − Vn(xn,Zn+1)
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� πn+1 + [
∂Vn(xn+1,Zn+1)/∂x

]
(xn+1 − xn)

= πn+1 + n
[
P(nxn+1,Zn+1) − C′(xn+1)

]
(xn+1 − xn)

� πn+1 + n
[
P

(
(n + 1)xn+1,Zn+1

) − C′(xn+1)
]
(xn+1 − xn) � 0.

The first inequality follows from inequality (22), (A1) and Theorem 8(i), and the second one
by the concavity of Vn(x,S) in x. The third inequality holds by (A1) and because we assumed
xn+1 � xn, and the last one by the Cournot property. �
References

[1] R. Amir, Cournot oligopoly and the theory of supermodular games, Games Econ. Behav. 15 (1996) 132–148.
[2] R. Amir, Sensitivity analysis of multisector optimal economic dynamics, J. Math. Econ. 25 (1996) 123–141.
[3] R. Amir, Market structure, scale economies and industry performance, CORE 2003/65, 2003.
[4] R. Amir, V. Lambson, On the effects of entry in Cournot markets, Rev. Econ. Stud. 67 (2000) 235–254.
[5] B. Arthur, Increasing Returns and Path Dependence in the Economy, University of Michigan Press, Ann Arbor,

1994.
[6] B. Bensaid, J.-P. Lesne, Dynamic monopoly pricing with network externalities, Int. J. Ind. Organ. 14 (1996) 837–

855.
[7] T. Bergstrom, H. Varian, Two remarks on Cournot equilibria, Econ. Letters 19 (1985) 5–8.
[8] A. Brandenburg, B. Nalebuff, Co-Opetition, Doubleday, New York, 1996.
[9] J. Boone, A new way to measure competition, Econ. J. 118 (2008) 1245–1261.

[10] J. Chen, U. Doraszelski, J. Harrington, Avoiding market dominance: product compatibility in markets with network
effects, RAND J. Econ. 40 (2009) 455–485.

[11] A. Dhebar, S. Oren, Optimal dynamic pricing for expanding networks, Manage. Sci. 4 (1985) 336–351.
[12] F. Echenique, Comparative statics by adaptive dynamics and the correspondence principle, Econometrica 70 (2002)

833–844.
[13] N. Economides, Network externalities, complementarities, and invitations to enter, Europ. J. Polit. Economy 12

(1996) 211–233.
[14] N. Economides, C. Himmelberg, Critical mass and network evolution in telecommunications, in: G.W. Brock (Ed.),

Toward a Competitive Telecommunication Industry, 1995, pp. 47–66.
[15] A. Edlin, C. Shannon, Strict monotonicity in comparative statics, J. Econ. Theory 81 (1998) 201–219.
[16] D. Fudenberg, J. Tirole, Game Theory, MIT Press, 1991.
[17] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[18] S. Hoernig, Existence of equilibrium and comparative statics in differentiated goods Cournot oligopolies, Int. J. Ind.

Organ. 21 (2003) 989–1019.
[19] M. Katz, C. Shapiro, Network externalities, competition and compatibility, Amer. Econ. Rev. 75 (1985) 424–440.
[20] M. Katz, C. Shapiro, System competition and network effects, J. Econ. Perspect. 8 (1994) 93–115.
[21] N. Kwon, Characterization of Cournot equilibria in a market with network effects, Manchester Sch. 75 (2007)

151–159.
[22] H. Leibenstein, Bandwagon, snob, and Veblen effects in the theory of consumers’ demand, Quart. J. Econ. 64 (1950)

183–207.
[23] C. Matutes, X. Vives, Competition for deposits, fragility, and insurance, J. Finan. Intermediation 5 (1996) 184–216.
[24] P. Milgrom, J. Roberts, Rationalizability, learning, and equilibrium in games with strategic complementarities,

Econometrica 58 (1990) 1255–1278.
[25] P. Milgrom, C. Shannon, Monotone comparative statics, Econometrica 62 (1994) 157–180.
[26] M. Mitchell, A. Skrzypacz, Network externalities and long-run market shares, Econ. Theory 29 (2006) 621–648.
[27] S. Oren, S. Smith, Critical mass and tariff structure in electronic communications markets, Bell J. Econ. 12 (1981)

467–487.
[28] J. Rohlfs, A theory of interdependent demand for a communications service, Bell J. Econ. Manage. Sci. 5 (1974)

16–37.
[29] J. Rohlfs, Bandwagon Effects in High-Technology Industries, MIT Press, Cambridge, 2001.
[30] C. Shapiro, Antitrust in network industries, Department of Justice, http://www.justice.gov/atr/public/speeches/

0593.htm, 1996.
[31] C. Shapiro, H. Varian, Information Rules: A Strategic Guide to the Network Economy, Harvard Business School

Press, Boston, 1998.

http://www.justice.gov/atr/public/speeches/0593.htm
http://www.justice.gov/atr/public/speeches/0593.htm


R. Amir, N. Lazzati / Journal of Economic Theory 146 (2011) 2389–2419 2419
[32] A. Shepard, Licensing to enhance demand for new technologies, RAND J. Econ. 18 (1987) 360–368.
[33] O. Shy, The Economics of Network Industries, Cambridge University Press, 2001.
[34] M. Spence, Product selection, fixed costs, and monopolistic competition, Rev. Econ. Stud. 43 (1976) 217–235.
[35] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955) 285–309.
[36] D. Topkis, Minimizing a submodular function on a lattice, Operations Res. 26 (1978) 305–321.
[37] D. Topkis, Supermodularity and Complementarity, Princeton University Press, 1998.
[38] T. Veblen, The Theory of the Leisure Class: An Economic Study of Institutions, Macmillan, London, 1899.
[39] X. Vives, Nash equilibrium with strategic complementarities, J. Math. Econ. 19 (1990) 305–321.
[40] X. Vives, Oligopoly Pricing: Old Ideas and New Tools, MIT Press, Cambridge, MA, 1999.


	Network effects, market structure and industry performance
	1 Introduction
	2 The model
	2.1 The model and the solution concept
	2.2 The basic assumptions

	3 Existence of equilibrium
	4 Industry viability
	4.1 A natural dynamics for the FECE concept
	4.2 Industry viability and its determinants

	5 Number of ﬁrms and market performance
	6 Concluding remarks
	7 Proofs
	References


